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We give a general solution of a problem involving plane-parallel shearing motion 
of a Maxwell body in a plastometer subject to a quasistatic concentrated inter- 
action. In our solution we employ physicomathematical modelling of the micro- 
structure and creep processes in the distributed mass of viscoelastic materials. 

In studying the physicomechanical properties of viscoelastic materials and their 
characteristics, as, for example, the coefficient of viscosity, the shear modulus, and 
the relaxation time, use is often made of a plastometer for plane-parallel shear [i, 2]. 
A plastometer is a system of two rigid steel plates between which is included the material 
mass being studied (see Fig. i). The shearing force is established by a constant load P 
by means of a steel wire and a guiding pully with moment of inertia I and outer radius R. 
In the modelling of the microstructure and the creep processes in viscoelastic materials 
no account is taken, in the majority of cases, of the inertia of the distributed mass of 
the specimen, the inertia of the apparent additional masses, and the local creep [2-6]. 

An attempt was made in [7] to take into account the inertia of the distributed mass 
in the equations of motion of a Maxwell body under a concentrated shearing force. The 
limit of the creep function (23) in [7], under the condition that the viscosity coefficient 

+ =, does not agree with the solution of the analogous problem in [8] for an absolutely 
elastic system. 

With regard to relaxational and oscillational processes inside the moving material 
(despite the fact that the load P is constant), we can state that the force on the moving 
plate of the plastometer can var~ depending on the nature of these processes. These phe- 
nomena were not taken into account in the analysis of specific experimental data. In the 
present paper we solve a problem involving the motion of a Maxwell body in a plane-parallel 
shear plastometer subject to quasistatic interactions; we take into account the inertia of 
the distributed mass of the material under study and also the inertia of the apparent addi- 
tional mass, the latter being an industrial characteristic of the instrumentation; also 
taken into account is the change in the external shearing force with motion of the system. 

We consider a plane-parallel shear plastometer, as shown in the figure: I is the 
pulley support, and 2 is the pulley; Mo is the mass of the upper plate and the attached 
rod; P is the constant shearing load; U(z, t) is the displacement function for an infi- 
nitely thin horizontal layer of the material, the displacement being in the direction of 
the shearing force; z is a coordinate axis; h is the distance between the plastometer 
plates (the material layer thickness); the lower plastometer plate is rigidly fastened 
(oblique shading). 

An indicator rod is rigidly fastened to the moving plate. Its common mass M, in the 
absence of an external load, plays the role of an apparent additional mass. When the sys- 
tem is subjected to the load P the apparent additional mass M = Mo + P/g + I/R 2, where P/g 
is the mass for the load, I/R 2 is the mass of the moving pulley, g is the gravitational 
acceleration, and Mo, P, I, and R are as defined above. We neglect the mass of the wire. 
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Fig. I 

Next we consider the behavior of the plastometer con- 
taining a viscoelastic material in its natural state [9]. 
We take a simple constitutive model, namely, the Maxwell 
model. It is characterized by two physical quantities: 
the shear modulus G and the viscosity coefficient q for 
the material under study. We select the experimental con- 
ditions such that G and q can be regarded as constants 
throughout the specimen. The local relationship between 
the relative shear y and the mechanical shear stress 
can be written in the form 

~ = ~ + . ~  ( i )  

where T = q/G is the relaxation-time constant. 

The rigidity of the specimen is much less than the rigidity of the steel plastometer 
components. We neglect deformations of the latter and assume that all the elements of the 
mass M are displaced in time with the same speed and acceleration and remain mutually paral- 
lel. We can regard the mass M as being concentrated in an infinitely thin layer at the 
upper boundary S(h) of the specimen, where S(h) is the upper contact area between the 
plate and the specimen. Consequently, the displacement, speed, and acceleration of the 
mass M will coincide with U(h, t), Ut(h, t), and Utt(h, t), respectively, where U(h, t) 
is the displacement of the upper plate, i.e., the contact layer between the plate and the 
specimen. 

Under the action of the load P on the specimen surface S(h) we have, as q § ~, the 
stress 

=(h, t ) = ~  S ' Lg R~+ Mo -- (2)  

where f is the force arising from external friction in the pulley bearings and internal 
friction of the wire. In the plastometers referred to, the force f almost never exceeds 
2F, which amounts to a negligibly small quantity in relation to the applied load P, so 
that we can neglect it. We take the area of a cross section of the specimen by a hori- 
zontal plane in the direction of the shearing force to be constant�9 throughout the region 
0 ~ z ~ h. The creep process is assumed to be isothermal owing to the fact that the speci- 
men thickness is i to 2 mm, and the mean rate of shear is small. The specimen length and 
the externalshear force are selected so that the motion of the specimen can be regarded 
as a simple shear [7]. 

Under these assumptions the motion of the system may be described by a function U(z, 
t), giving the horizontal displacement of an infinitely thin layer of the material at 
height z, the relative shear of the layer being given by 

? = aU (z, t ) / a z  (3) 

Using the r e l a t i o n s  (1)-(3)  and the physico-mathematical  modell ing of [9, 10], we 
write the partial differential equation for the displacement function: 

G U~zz = 0 
�9 U t t t + ~ U t t - - ~  (4) 

where O is the density of the material. 

For t < 0 we assume there is no load (P = 0); for t > 0, we assume P = const, so that 

U(z,O) =o,  u t ( z , o )  = 0, o < z  < h  (5) 
Since the frictional force in the system is proportiona I to the displacement speed 

Ut(z, t) and Ut(z, O) = 0 we can take as a third initial condition the relations 

pUtt(z ,O) --  G Uzz(z,O) = 0 ~ r  z < h (6) 

and for z = h 

U~(~, ~ (h, O) (7)  
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The boundary conditions of the moving system can be determined for t > 0 as in [8, 
ii]. starting from the equilibrium of the forces close to the boundary as z § h and the 
relations (1)-(3). We write them in the form 

U(O, t).---- O, SI 1 Utz(h, t) = P --  M ['~Uttt (h, t) -~ Utt (h, t)] 

For pSh/M < i and 4TS~/Mh > i we can write the solution of Eq. (4), subject to the 
initial and boundary conditions (5)-(8), in the form 

U (z, t) Pz (t. + -- ~_] ~ . 

~'C " s ~  - 2  

~ sin: ~k sin" ~z /h  [ t -- 3~k~ sin q~t qj L(3 -- ~k 2) cos q~t + 

where the ~k are the positive solutions of the equation 

etg~ =---M--M ~ 
Sph 

(8) 

(9 )  

(lO) 
i 

~ = 1 / ~  u~? - t  % = ~ (k = ~o z, 3, . .) 
r ph~ ' 

When M § 0 the solution (9) agrees in form with the solution (23) of [7], obtained by 
an operational method; however, it differs from the latter in the coefficient of the ex- 
ponential term. If in Eq. (9) we put M = 0 and let ~ § =, then the solution (9) agrees 
with the solution of a similar problem [8] involving the motion of an absolutely elastic 
system. 

For the given case the mass M is, in principle, never equal to zero; it can only be 
approximated in some manner to P/g. Therefore, it is of interest to consider the limit 
of the solution (9) for M # 0 as n § ~. 

U (z, t) - ~ - - " ~ - ~  4Ph sin ~ sin (~z / h) cos ~k (G / phi) -V" t 
k=l ~ (2~ + sin 2~) (n) 

The solution (9) applies in general for describing the motion of the disturbed mass 
of a Maxwell body under specified'experimental conditions. It can be used to investigate 
materials of small viscosity and also when the influence of the moving system on the exter- 
nal shear force is negligible. 

For stationary motion of the system the influence of the engineering instrumentation 
characteristics (of the mass M) is substantial for t >> 2T 

sn Sn~ -~-- + - ~  -- (12) 

It is evident that necessary readjustments must be made when dealing with actual char- 
acteristics (in engineering structures) of elastic and dissipative properties of the mate- 
rials employed, particularly, when calculations for such structures are to be made. 
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